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Motivation

> 1999 flood at the Blayais nuclear power plant.
» Damage to the plant’s off-site power supply - crucial for
cooling reactors.

» Level 2 event on the International Nuclear Event Scale - “Very
close to a major accident”.




Motivation

» Why do we care? (Why was it interesting?)
» The flood was due to a combination of extreme winds AND
sea-levels.

» Implies we cannot consider these variables in isolation when
considering extreme risks.

» New methods of evaluating flood risk at nuclear sites were
developed.

» Was in some sense a forerunner of the 2011 Fukushima
nuclear disaster - also a combination of two extreme events
(earthquake + tsunami).



Motivation

This results in the following questions:
» How do we define an extreme event for two (or more)
variables?
» How do we model these events?
» How do we summarise the relevant risks?
We restrict attention to the bivariate (two variable) setting.



Motivation

» What about the univariate (one variable) setting?
» This problem is well-studied.

One Variable

Time



Motivation

One Variable

Time

> Fit generalised Pareto distribution to exceedances of some
high threshold (Coles, 2001).

» Use fitted model to estimate return levels: given a small
probability p close to 0, return level x, satisfies

Pr(X > xp) = p.



Motivation

» Return levels (high quantiles) widely used to summarise
extremal risks in the univariate setting.

» E.g. design of flood defences in the UK (D’Arcy et al., 2022).

» A wide range of approaches exist for their estimation.



Motivation

» What is extreme for two variables?

Multiple Variables

Only Y extreme

Only X extreme




Motivation

P> Need to consider extreme behaviour in all three regions.
» To do this, we expand the notion of a return level.
» Given a (continuous) random vector (X, Y), we define the set

RC(p) == {(x,y) € R* | Pr(X > x,Y > y) = p},

where p is very small.
» Provides a summary of joint extremes.



MOtiVation

Example data

Q>



Motivation

Multiple Variables Return Curve

Only Y extreme

Only X extreme




Motivation

» We have our risk measure for bivariate extremes.
» But how do we estimate it?

» For very small probabilities, standard statistical techniques fail
- extrapolating outside the data range.

> Motivate the use of bivariate extreme value theory.



Return curves

> Return curve estimation not been well studied.
» Motivated the first paper of my PhD, in which | considered:

1. Return curve estimation.
2. Quantifying uncertainty.
3. Evaluating goodness of fit.



Return curves - estimation

» A note on dependence/copula modelling: we assume
standardised marginal distributions for random vectors (X, Y).

» In practice, this can be achieved through the probability
integral transform.

> If X ~ Fx, Y ~ Fy, then
(U, V) := (Fx(X), Fy(Y)),

has standard uniform margins.



Return curves - estimation

> We require a means of evaluating the joint tail, i.e.,
Pr(X > x,Y > y) = p for small p.

> Many bivariate extreme value models available for this
purpose.

» Bivariate extreme value model = a framework for evaluating
the dependence between extremes.

» How do we pick a model?



Return curves - estimation

> We restrict attention to two models due to their flexibility and
minimal assumptions.

» In particular, neither make explicit assumptions about the
form of extremal dependence.

» Model of Heffernan and Tawn (2004).
» Model of Wadsworth and Tawn (2013).



Return curves - estimation

» Suppose we have (X, Y) with standard exponential margins.
» Heffernan and Tawn (2004) assume that

(Y| X=x)~ax+x°Z,

for large x.
» a€[0,1], 5 €0,1) and Z is a residual process.
» «,[3 capture the extremal dependence of (X, Y).

» Fancy regression.



Return curves - estimation

Inverted logistic
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Return curves - estimation

Inverted logistic
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Return curves - estimation
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Return curves - estimation

» Suppose we again have (X, Y) on standard exponential
margins.

> Let Ky, := min{X/w, Y/(1—w)} for each w € [0, 1].
» Wadsworth and Tawn (2013) assume that for each w € [0, 1],

(Kw — u | Ky > u) ~ Exp(A(w)),

for large u.
» \(w) termed the angular dependence function.

» Captures the extremal dependence of (X, Y).



Return curves - estimation
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Return curves - estimation
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Return curves - estimation
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Return curves - estimation
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Return curves - estimation
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Return curves - estimation

Bivariate normal, p=0.5 ADF
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Return curves - estimation

» Computed return curve estimates using Heffernan and Tawn
(2004) and Wadsworth and Tawn (2013) models.

» Compared these estimates to an existing technique.
» Considered a range of copula examples.

» Goal: find the model with the least bias and variance.



Return curves - estimation
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Return

curves - estimation

Model of Wadsworth and Tawn (2013) gave the best curve
estimates overall.

Quick, flexible, and outperformed the technique of Heffernan
and Tawn (2004).

This is significant since this latter approach is widely used for
bivariate extreme value modelling.



Return curves - quantifying uncertainty




Return curves - quantifying uncertainty




Return curves - quantifying uncertainty

» How do we capture variability in return curves?

» Estimates vary in two dimensions.



Return curves - quantifying uncertainty







Return curves - quantifying uncertainty
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Return curves - quantifying uncertainty




Return curves - quantifying uncertainty

Formally:
» Define lines corresponding to a range of angles.
» Locate intersection points of curve estimates and lines.

» Compute Euclidean distances from origin to intersection
points.

» Evaluate variability in distances.



Return curves - quantifying uncertainty

» This reduces it to a one dimensional problem.

» Can compute meaningful confidence intervals.



Return curves - quantifying uncertainty
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Return curves - diagnostics




Return curves - diagnostics

» In practical settings, we need to check goodness of fit for
curve estimates.
» Does it accurately represent the probability p?

» ‘True' curve is unknown.



Return curves - diagnostics




Return curves - diagnostics

» Probability of being in any shaded region should equal p.
P> We can estimate these probabilities empirically.
P> Bootstrap the data to capture variability.

» Compare empirical estimates to true probability, which is
pre-set.



Return curves - diagnostics

Survival Regions Considered Points
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Return curves -

Probability

diagnostics

p =0.001, n = 10000
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Return curves

1. Return curve estimation v/
2. Quantifying uncertainty v~
3. Evaluating goodness of fit v~
See Murphy-Barltrop et al. (2022) for further details.



Improved estimation of the angular dependence function

» Recall: Wadsworth and Tawn (2013) model gave the best
return curve estimates overall.

» A(w) is the key model quantity.
> However, few applications of this model exist.

» Hence, estimation of A not well studied.



Improved estimation of the angular dependence function

» For each w € [0, 1] we assume,
(Kw — u | Ky > u) ~ Exp(A(w)),

for large u, where K, := min{X/w, Y /(1 —w)}.
» Consequently, we can estimate A(w) using the maximum
likelihood estimator for the exponential rate parameter.



Improved estimation of the angular dependence function
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Improved estimation of the angular dependence function

» This estimator is pointwise for each w € [0, 1].

» Bumpy and unrealistic.

» Does not respect theoretical conditions for angular
dependence function:
A(0) = A1) =1,
A(w) > max(w, 1 — w) for all w € [0, 1].



Improved estimation of the angular dependence function
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Improved estimation of the angular dependence function

» We decided to address these issues.

» This required two steps:

1. Assuming a smooth, flexible form for A.

2. Estimating parameters.



Improved estimation of the angular dependence function

» Bernstein-Bézier polynomials are a natural candidate.

» We assume

k

30 =35 (4w - we .

i=0

for some 2 < k € N, with 8; > 0 for all i < k.



Improved estimation of the angular dependence function

We want A(0) = A(1) = 1.
» Set By = Bk = 1, giving

k—1
Aw) = (1—w)+ 3 6<k> Wil = w) + Wk, w e [0,1],
i=1



Improved estimation of the angular dependence function

We want A\(w) > max(w,1 — w) for all w € [0, 1].
» Constrain parameter space of (f1,...,Ok_1) to satisfy this
inequality.

k—1

AMw) = (1 —w)k+ Zﬂ,(f) w'(1—w)*"+wk welo1],

i=1



Improved estimation of the angular dependence function

> We use a composite likelihood approach to estimate the
parameters (f1, ..., Bk—1)-

» Multiply likelihood functions together for different w € [0, 1].

» Better than considering each w € [0, 1] in turn.

» Gives a global estimator rather than a pointwise one.



Improved estimation of the angular dependence function
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Improved estimation of the angular dependence function
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Improved estimation of the angular dependence function

» We illustrate these techniques using river flow datasets from
the North of England.

Locations of river gauges
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Improved estimation of the angular dependence function

» Understanding the probability of observing extreme river flow
events (i.e., floods) at multiple sites simultaneously is
important in various sectors, such as insurance (Keef et al.,
2013) and environmental management (Lamb et al., 2010).

» How likely are we to observe joint floods for different pairs of
sites?



Improved estimation of the angular dependence function

» Consider data over (approximately) 30 years for the
October-March interval.

> Typically observe the highest rainfall in this period.

» Fix the site on the River Lune (near Lancaster) to be a
reference site.



Improved estimation of the angular dependence function

Steps
1. Transform marginal distributions to standard exponential.
2. Obtain estimates of the angular dependence function.

3. Estimate return curves for different pairs of gauges.



Improved estimation of the angular dependence function
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Improved estimation of the angular dependence function
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Improved estimation of the angular dependence function

Wenning vs Lune - original margins Irwell vs Lune - original margins
- -~ Mean curve
. o | Median curve
© © = = 95% confidence interval
%o <
g@ B9 J
j=2) ©T ©
£8 3
5 EQ A
£9 1 ! £
| o
o N T
« |
! o
o ' ,
T T T T T T
0 500 1000 0 500 1000
Lune data Lune data

Aci2 estimator AcL2 estimator



Improved estimation of the angular dependence function
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Improved estimation of the angular dependence function

» Novel estimates for the angular dependence function have
lower bias and variance (on average)

» Allows us to better evaluate the extremal dependence
structure.

» More accurate and realistic estimates of return curves.

» Preprint will be available very soon - keep an eye on arXiv.



Non-stationary return curves

» Up until now, we have assumed the data we are working with
is independent and identically distributed.

» In practice, we often want to estimate return curves for
combinations of environmental variables (e.g. temperature,
relative humidity, wind speed).

» These variables can exhibit strong trends due to
seasonality/climate change.

» Such variables are said to be non-stationary.



Non-stationary return curves

» Trends in variables = trends in return curves.

» Question: how do we model non-stationary trends in return
curves?

» First need to consider what kinds of trend can exist.



Non-stationary return curves

> Let {X¢, Yi},t € {1,...,n} denote a bivariate process.

» Two possible forms of non-stationarity:

1. Trends in marginal distributions - individual behaviour of X;
and Yt-

2. Trends in dependence structure - dependence between X; and
Y.



Non-stationary return curves

Marginal non-stationarity

X




Non-stationary return curves
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Non-stationary return curves

» Sparse literature for modelling non-stationarity in extremal
dependence.

> Must account for both forms in our estimation procedure.

» Assume marginal non-stationarity has already been accounted
for (i.e., marginal datasets have been de-trended).



Non-stationarity

We proposed an non-stationary extension of the Wadsworth and
Tawn (2013) model.

> Let {X;, Y;} denote a non-stationary process (on standard

exponential margins) influenced by some external covariates
Zt,tG {1,...,”}.

» Forall we[0,1] and t € {1,...,n}, let
Kw,t := min %, 1’_/—fw



Non-stationarity

» We assume
(KW,t —u | KWJ > u, Zt = Zt) ~ EXp(A(W | Zt = Zt))

for large u.

» MNw | Z; = z;) is termed the non-stationary angular
dependence function.



Non-stationarity

» Can estimate \(w | Z; = z;) via standard quantile regression
techniques.

» Flexible framework for capturing trends in the extremal
dependence structure.

» Importantly, this model can be used to evaluate trends in
return curves.

» Non-stationarity in return curve estimation has not been
previously considered.



Non-stationary return curves

» Take the 1980-2080 temperature and relative humidity

UKCP18 data for the nuclear site at Heysham, UK.
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Non-stationary return curves

» We focus on summer data only.

> Let 0 < RH < 100 represent relative humidity. We define a
‘dryness’ variable: Dr := 100 — RH.

» Combination of high temperature and high dryness typical of
drought-like conditions.

» This is a concern for nuclear regulators (Knochenhauer and
Louko, 2004).

» Understanding relationship between the extremes could allow
for better risk management.



Non-stationary return curves
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Non-stationary return curves

1. Remove marginal trends using methods proposed in Davison
and Smith (1990) and Eastoe and Tawn (2009).

2. Transform data to standard exponential margins.
3. Fit non-stationary model.

4. Calculate return curve estimates up to the year 2080.



Non-stationary return curves
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Non-stationary return curves

» Many nuclear facilities built to withstand 10~* annual
exceedance probability events.

» Such events will not be fixed in the non-stationary setting.

10,000 Year Return Curves
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Non-stationary return curves

» Our model captures observed trends in extremal dependence.
» Can be used to estimate non-stationary return curves.
» Useful for evaluating joint extremal risks in future climates.

» See Murphy-Barltrop and Wadsworth (2022) for further
details.



Discussion

Still many open avenues within this research:
» Return curves in three (or more) dimensions.

» Further developing Wadsworth and Tawn (2013) modelling
framework.

> Modelling negative extremal dependence structures.
» Alternative measures of risk.

... to name but a few.



Discussion

Pr(Outside Contour) = p
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Summary

Motivation.

Return curves.

Improved estimation of the angular dependence function.
Non-stationary return curves.

» Discussion.

My thesis should be available through Lancaster University in June
2023 (approximately).



» This work will be used by the Office for Nuclear Regulation.

> Will help to quantify the risks from present and future joint
extreme events.

» Could help inform the design bases for future nuclear
installations.



Thanks very much for listening!

Does anyone have any questions? :)
c.barltrop@lancaster.ac.uk
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