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Motivation - return curves

> My PhD: estimating return curves at extreme values.

» Given two variables,
RC(p) :={(x,y) € R? | Pr(X > x,Y > y) = p},

where p is very small.
» Provides a summary of extremal dependence.

» Return level extension.



Motivation - return curves

Example data
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Motivation - return curves

P In practice, we wish to estimate return curves for
combinations of environmental variables (temperature,
relative humidity, wind speed etc.).

» Such variables exhibit non-stationarity.



Motivation - return curves

» Return curves lack meaning in the non-stationary setting,
motivating an extended definition.

» Given {X;, Y;} with covariates Z;, t € {1,2,..., T},
RC,(p) ={(x,y) € R? | Pr(X: > x,Ye >y | Z¢ = 2¢) = p}.

» End goal: estimating non-stationary return curves.



Motivation - return curves

Non-stationary return curves
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Multivariate Extremes

P> To estimate return curves, we require models for evaluating
the joint tail of (X, Y).

> Frameworks for assessing extremal dependence.

» Classification of extremal dependence given by the coefficient
X:

X = Lllinl Pr(Fy(Y) > u | Fx(X) > u) € [0,1].
> y = 0 = asymptotic independence.
> x > 0 = asymptotic dependence.



Multivariate Extremes

» Classical models based on framework of multivariate regular
variation.

» Given a random vector (X, Y) with standard Fréchet margins,
define R:== X+ Y and W :=X/(X+Y):

lim Pr(W € B,R>sr|R>r)=H(B)s™!, s> 1.

r—o0o

» H is termed the spectral measure



Multivariate Extremes

» Downside: multivariate regular variation is only suitable in
the case of asymptotic dependence.

» Extremal dependence structure unknown in practice.

> Motivates models that can capture both extremal dependence
regimes.



Multivariate Extremes

» First model proposed in Ledford and Tawn (1996).

» Given random vector (X, Y') on standard exponential margins,
Pr(X > u, Y > u) =Pr(min(X,Y) > u) — L(e") exp(—u/n),

as u — oo, with L slowly varying and 1 € (0, 1].
> 1 =1 = asymptotic dependence.

v

n < 1 = asymptotic independence.
» Equal marginal growth rates = limited applicability.



Multivariate Extremes

» Ledford and Tawn (1996) model was extended in Wadsworth
and Tawn (2013).

» Given any ray w € [0, 1],
Pr(X>wu,Y > (1—-w)u)=

P <min {f/l_yw} > u> s (e | w)exp(—A(w)u),

as u — oo, with L slowly varying.



Multivariate Extremes

» A(w) > max(w,1 — w) is termed the angular dependence
function (ADF).

» Summarises the joint tail behaviour.

» Captures both asymptotic dependence (lower bound) and
asymptotic independence.

» Ledford and Tawn (1996) recovered when w = 0.5 =
n=1/(2X(0.5)).

> Allows evaluation of extremal dependence in all regions.



Multivariate Extremes

Define K, := min {%, ﬁ}
Pr(Kw > u+ v|Ky > u) = exp(—A(w)v),

as u — oo for any v > 0.

Simplified: (K, — u | Ky > u) ~ Exp(A(w)) for all w € [0, 1].



Multivariate Extremes

Bivariate normal, p=0.5 ADF
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Multivariate Extremes

Bivariate normal, p=0.5
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Multivariate Extremes

Bivariate normal, p=0.9 ADF
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Multivariate Extremes

Bivariate normal, p=0
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Multivariate Extremes

Bivariate normal, p=-0.5 ADF
o o
Ei I
o
0
-
©
- z
=
<« 4
o
=
o~ - S Phd
o i NPt
T T T T T T T T T T T
0 2 ) 6 10 0.0 0.2 0.4 06 0.8 10
X w




Non-stationarity

> Let {X;, Yi} with Z, t € {1,2,..., T}, denote a
non-stationary process.
» Two forms of non-stationarity can exist.

1. Trends in marginal extremes - tail of X; (Y;). Well studied.
2. Trends in extremal dependence. Sparse literature.

» Must account for both forms in our estimation procedure.

> We focus on second problem and present a novel modelling
technique.



Non-stationarity
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Non-stationarity

» Few approaches for capturing non-stationarity in extremal
dependence.

» Almost all developed using multivariate regular variation
framework.

» Asymptotically independent case not well studied.



Non-stationarity

We propose an non-stationary extension to the Wadsworth and
Tawn (2013) model.
With {X:, Y;} on standard exponential margins and w € [0, 1]:

1. Define Kyt :== min {Xf Yi }

w’l—-w

2. Assume
Pr (Kw’t > v+ u‘KWJ >uZy = zt) — exp(=AN(w | Z; = z¢)v),

asu—ooforanyv>0and t < T.
Aw | Z; = z;) is termed the non-stationary ADF.



Non-stationarity

Can estimate via quantile regression on Ky, ¢:
> Select probabilities g1 < g» < 1 close to 1.
» For a fixed w, find u; and u» such that

Pr (Kw,t < Ul‘zt = Zt) =Aq
Pr (Kw,t < UZ‘Zt = Zt) = q2.

» As g1 — 1, ug — 00, so we have

]_ _
2 = exp{—Aw | Ze = 22)(u2 — )}
—q1




Non-stationarity

1—q
1-q
Estimator given by

R 1 1-
/\(W‘thzt):_uz—ul IOg( q2)

=exp{—ANw | Z; = z¢)(u2 — 1)}




Non-stationarity

In practice, there are a few additional steps.

» Averaging over different values for g; and ¢,. Bias-variance
trade-off.

> Smoothing.
» Imposing theoretical properties of ADF.



Non-stationarity
Estimator is pointwise - unrealistic.

Hill estimator
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Non-stationarity

Smooth using Bernstein-Bézier polynomials (Marcon et al.,
2017).

BP estimator
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See Murphy-Barltrop and Wadsworth (2022) for further details.



Non-stationarity

> We can use non-stationary ADFs to estimate return curves.
Pr(Xe >x, Yy >y |Zi=2;)=p

» Given any ray w € [0,1] and t, define r as

ri=— ! lo ( P )
MW | Zi=12y) S\1-¢q/)

with g <1—p< 1.

> Implies
ﬁ =exp(—=AMw | Z¢ = z1)r).



Non-stationarity

» Let (x,y) = (w(r+ u), (1 — w)(r + vu)), with u equal to the
g-th quantile of Ky, ;.

» We have

Pr(X: >x,Yy >y | Z =12¢)

Pr(Xe/w>r+u, Yy /(l—w)>r+u|Z =2¢)
Pr(min{X¢/w, Ye/(1 —w)} >r+u| Z; = z;)
Pr(Kwe>r+u|Z;=1z)

r



Non-stationarity

Pr(Kwe>r+u|Z=1z)
=Pr(Kne>r+u| Kyt >uZi =12)

X Pr(Ku,e > ul| Zs = z¢)
~exp{—- AW | Z; =z)r} Pr(Ku e > u| Zy = 24)

R
1—gq

So (x,y) is a point on the return curve RC,,(p). Repeat for all w
and t.



Simulation study

| won't bore you with the details.
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Motivating example - UKCP18 data

P> Take the 1980-2080 temperature and relative humidity
UKCP18 data for the nuclear site at Heysham, UK.

> We focus on summer data only.
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Motivating example - UKCP18 data

» Suppose 0 < RH < 100 represents relative humidity. We
define a ‘dryness’ variable: Dr := 100 — RH.

» Combination of high temperature and high dryness typical of
drought-like conditions.

» This is a concern for nuclear regulators (Knochenhauer and
Louko, 2004).

» Understanding relationship between the extremes could
allow for better risk management.



Motivating example - UKCP18 data
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Motivating example - UKCP18 data

1. Remove marginal trends using methods proposed in
Davison and Smith (1990) and Eastoe and Tawn (2009).

2. Transform data to exponential margins.
3. Estimate non-stationary ADF.
4. Calculate return curve estimates up to the year 2080.



Motivating example - UKCP18 data

Red = start, blue = end.
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Motivating example - UKCP18 data

Rolling window n estimates
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Motivating example - UKCP18 data
Many nuclear facilities built to withstand 10~% annual
exceedance probability events.
Such events will not be fixed in the non-stationary setting.
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Conclusions

» We have developed a novel modelling framework for
asymptotically independent, non-stationary data structures.

» Can estimate non-stationary return curves that reflect
observed trends.

» Our work makes a contribution to a particularly sparse field.



Discussion

» Uncertainty - difficult to quantify in any meaningful way.

» Modelling choices - quantile levels, number of quantile pairs,
degree of polynomial, covariate function forms.

> Assumes we can perfectly account for marginal
non-stationarity - never the case in practice.

> No theoretical results.

» Lots of avenues for future research.



Thanks for listening! Does anyone have any questions?
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Averaging over quantiles

» How do we select g; and g»? Bias-variance trade-off

» We instead consider a range of quantile pairs simultaneously
and compute an average estimator

» {(q1,92j) | 1 <j < m} be quantiles near one, with
q1j < g2, <1

m

Aor(w | z¢) = % D Xi(w ] ze).

Jj=1

» Found this estimator to outperform individual pairs.



Smoothing

> \gr is pointwise for each ray w € [0, 1] - so horrible and
bumpy!

» Non-smooth ADF estimates that we would not expect to
observe in practice.

» Use parametric polynomial functions to get a smooth
estimate.

» Bernstein-Bézier polynomials of degree kK > 0
Ok
f _ ’_ i1 — w)k—i
() =3 o (§)wia-w

with coefficients «; € [0, 1] for each i



Smoothing

» In standard form, this polynomial is fixed.
> We extend to allow covariate influence.

» Also, 0 < f(w) < 1: but A can be above 1!
» Propose family

k

) = Y- Ao (| ) wit = w) s e € 0.50)*

i=0

Bi » RP — [0, 00) are positive functions of covariates for all i
> Bo=0k =1



Smoothing

» Goal: estimate f; for all t.

» We propose parametric forms for the coefficient functions -
e.g. Bi(z:) = exp(a; + biz¢) with a;, bj € R.
> Find 4;, b; for all i by minimising

[ Aor(w | z:) — fie(w)]

over all w and t.

> Define resulting estimator to be Agp(- | z¢)



Theoretical properties.

> We impose some theoretical properties on both estimators.
» Ensures lower bound and endpoints are satisfied.

> A(w) > max(w,1— w)

> \0)=X(1)=1
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Marginal trends
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