Modelling non-stationarity in asymptotically
independent extremes

C. J. R. Murphy-Barltrop®3 and J. L. Wadsworth?

1STOR-i Centre for Doctoral Training, Lancaster University LAl 4YR, United Kingdom
Department of Mathematics and Statistics, Lancaster University LAl 4YF, United Kingdom
3Fathom, Square Works, 17-18 Berkeley Square, Clifton, Bristol BS8 1HB, United Kingdom

17th May 2022

° =
STOR - Lancaster E3 I oo Office for
UanCI'Slty % Physical Sclences Nuclear Regulation

Research Council



Motivation - return curves

> My PhD: estimating return curves at extreme values.

» Given two variables,
RC(p) :=={(x,y) € R* | Pr(X > x,Y > y) = p},

where p is very small.

» Provide a summary of extremal dependence.



Motivation - return curves

Example data
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Motivation - return curves

P In practice, we wish to estimate return curves for
combinations of environmental variables (temperature,
relative humidity, wind speed etc.).

» Such variables exhibit non-stationarity.



Motivation - return curves

» Return curves lack meaning in the non-stationary setting,
motivating an extended definition.

» Given {X;, Y;} with covariates Z;, t € {1,2,..., T},
RC,(p) ={(x,y) € R? | Pr(X: > x,Ye >y | Z¢ = 2¢) = p}.

» End goal: estimating non-stationary return curves.



Non-stationarity

» For {X:, Y:}, two forms of non-stationarity can exist.

1. Trends in marginal extremes - tail of X; (Y;). Well studied.
2. Trends in extremal dependence. Very sparse literature.

> Must account for both forms in our estimation procedure.

» We focus on second problem and present a new modelling
technique.



Multivariate extreme value theory (MVET)

» Marginal transformations: commonly transform marginal
distributions prior to MVET analysis:
1. X, ~ Fx,, Ye ~ Fy,.
2. (U, V) := (Fx,(X.), Fy,(Y:)) has UNIFORM margins.
3. Transform to margins of choice (standard exponential).

» Extremal dependence: commonly assess this feature via
summary measures such as 7 € (0, 1] (Ledford and Tawn,
1996, 1997).

> 1 =1 = asymptotic dependence
> 1 < 1= asymptotic independence

Pr(min(X,Y) > u+v | min(X,Y) > u) = exp{—v/n}, v—



Wadsworth and Tawn (2013) framework

Given (X, Y) with standard exponential margins and any ray
w e [0,1]:

1. Define K,, := min {%, ﬁ}
2. Assume

Pr{Kw > u+ v|Ky > u} = exp{—A(w)v},

as u — oo for any v > 0, with A(w) > max(w,1 — w).
Implies Ky, — u | Ky > u ~ Exp(A(w)).



Wadsworth and Tawn (2013) framework

» A\(w) is termed the angular dependence function (ADF)
and determines the joint tail behaviour.

» Captures both asymptotic dependence and asymptotic
independence - unlike many MVET approaches.

» Extension of Ledford and Tawn (1996, 1997), with
n=1/(2X(0.5)).

» Allows evaluation of extremal dependence in all regions (see
next slide).
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Bivariate normal,
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Examples

Bivariate normal, p=-0.5 ADF
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Non-stationary extension

{X¢, Y¢} with standard exponential margins and any ray w € [0, 1].

W I-—w

1. Define Ky ¢+ := min {Xf Yi }

2. Assume
Pr (KW’t > v+ u‘KW,t >u,Zy = zt) — exp{—A(w | Z; = z;)v},

asu—ooforanyv>0and t < T.
AMw | Z¢ = z;) is termed the non-stationary ADF.



Estimation

> Select high quantiles g1 < g close to 1.

» For a fixed w, we use quantile regression to estimate u; and
up such that

Pr (Kw,t < Ul‘zt = Zt) =q
Pr (Kw,t < UZ‘Zt = Zt) = Q2.
> As g1 — 1, we have

1_
1 92 _ exp{—-ANw | Z; = z;)(u2 — 1)}
—q1




Estimation

» Estimator given by

« 1 1—
Aw | Ze=2) = — |Og< CI2)

up — Uy 1-q1

P In practice, we average over quantile levels and smooth the
estimator over w using Bernstein polynomials (Marcon et al.,
2017).

» See Murphy-Barltrop and Wadsworth (2022) for further
details.



Motivating example - UKCP18 data

> Take the 1980-2080 temperature and relative humidity
projections for the nuclear site at Heysham, UK - we focus on
summer data only.

» Suppose 0 < RH < 100 represents relative humidity. We
define a ‘dryness’ variable: Dr := 100 — RH.

» Combination of high temperature and high dryness relevant
for nuclear safety (Knochenhauer and Louko, 2004).

» Understanding relationship between the extremes could allow
for better risk management.



Trends in the data
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Modelling procedure

1. Remove marginal trends using methods proposed in
Davison and Smith (1990) and Eastoe and Tawn (2009).

2. Transform data to exponential margins.

3. Obtain estimate of non-stationary ADF through quantile
regression.

4. Calculate return curve estimates up to the year 2080.



Non-stationary ADF
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Summer return curves
Many nuclear facilities built to withstand 10~% annual
exceedance probability events. Such events will not be fixed in
the non-stationary setting.

Heysham Dryness
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Conclusions

> We are able to estimate non-stationary return curves that
reflect observed trends.

» Our work makes a contribution to a particularly sparse field.



Thanks for listening! Does anyone have any questions?
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One final note
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Introduction

Formed out of the University of Bristol.
Co founded by a team of world leading scientists.
Aiming to provide comprehensive water risk intelligence for the entire planet.

Research has always been a critically important part of our company development.
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First publication of large i -
scale flood dependency in . R o
the US /

Flood spatial dependency is defined
using the observed record.

Fathom’s event set covers 10,000
years of simulation and >500,000
unique events.
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Abstract

Please come and speak to me at any point if you have any
questions/queries about the research we do!



Averaging over quantiles

» Select some high quantiles g1 ; < g ; close to 1 with
i<neN.

» Use quantile regression to estimate uy ; and up ; such that

Pr (Kw,t < u

Z = Zt) = q1,i

Pr (Kw,t < Z, = Zt) =qz.

n

1 1 1—qo;
A Z, = ~N—— _ :
(w|Zs=2z) nz og (1—Q1,i>

Uo i — U7
i—1 2,i 1,i




Dryness
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Marginal trends
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