Improving estimation for asymptotically independent bivariate extremes via global estimators for the angular dependence function

Callum Murphy-Barltrop, Jennifer Wadsworth and Emma Eastoe

EVA 2023

- ► Have just finished my PhD at Lancaster University, supervised by Jennifer Wadsworth and Emma Eastoe.
- Will be starting a 3-year postdoc at TU Dresden this September.

- Multivariate extreme value model = framework for evaluating extremal dependence of a random vector (X, Y).
- Classical approaches based on the framework of multivariate regular variation (MRV).

- Suppose (X, Y) has standard Pareto margins and define R := X + Y, V := X/(X + Y)
- ▶ (X, Y) is MRV if, for any measurable $B \subset [0, 1]$,

$$\lim_{r\to\infty}\Pr\bigl(V\in B,R>sr\mid R>r\bigr)=H(B)s^{-1},s\geq 1.$$

- ► TLDR; as R gets big, V and R become independent.
- ► H is the spectral measure and summarises the extremal dependence (Resnick, 1987).

Fundamental classification of extremal dependence given by the coefficient.

$$\chi = \lim_{u \to 1} \Pr(F_Y(Y) > u \mid F_X(X) > u) \in [0, 1].$$

- $\lambda = 0 \Rightarrow$ asymptotic independence.
- $ightharpoonup \chi > 0 \Rightarrow$ asymptotic dependence.

- Classical approaches based on MRV (most approaches) cannot distinguish between asymptotic independence and complete independence.
- ► In both cases

$$H({0}) = H({1}) = 0.5.$$

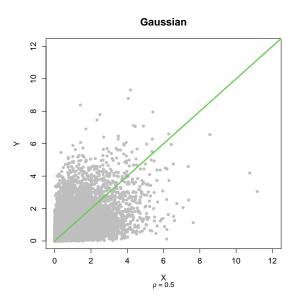
Consequently, MRV cannot accurately extrapolate for asymptotically independent vectors (Ledford and Tawn, 1996, 1997; Heffernan and Tawn, 2004).

- More recent techniques have been developed that can model both dependence regimes.
- ▶ Throughout the remainder of this talk, let (X, Y) be a random vector on standard exponential margins.

First approach given by Ledford and Tawn (1996, 1997).

$$\Pr(X>u,Y>u)=\Pr(\min(X,Y)>u)\to L(e^u)\exp(-u/\eta),$$
 as $u\to\infty$, with L slowly varying and $\eta\in(0,1].$

- Asymptotic dependence: $\eta = 1$.
- ▶ TLDR; joint survivor function decays exponentially along the y = x line.



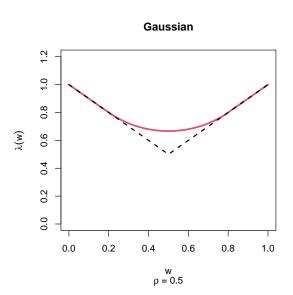
- ► Ledford and Tawn (1996, 1997) model was extended in Wadsworth and Tawn (2013).
- ▶ Given any ray $w \in [0, 1]$,

$$\Pr\left(X > wu, Y > (1 - w)u\right) = \\ \Pr\left(\min\left\{\frac{X}{w}, \frac{Y}{1 - w}\right\} > u\right) \to L(e^u \mid w) \exp(-\lambda(w)u),$$

as $u \to \infty$, with L slowly varying.

▶ $\lambda(w)$, $w \in [0,1]$ is known as the **angular dependence** function (ADF).

- TLDR; joint survivor function decays exponentially in all regions.
- $ightharpoonup \lambda(w) \geq \max(w, 1-w).$
- Asymptotic dependence: $\lambda(w) = \max(w, 1 w)$.
- $\eta = 1/(2\lambda(0.5)).$

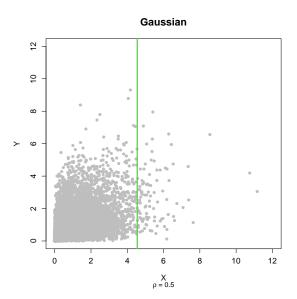


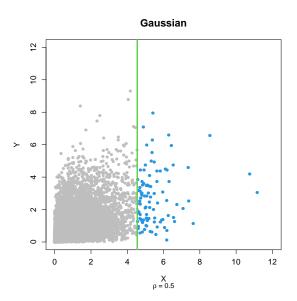
- ► Alternative representation for multivariate extremes given by Heffernan and Tawn (2004).
- Roughly speaking, they assume that

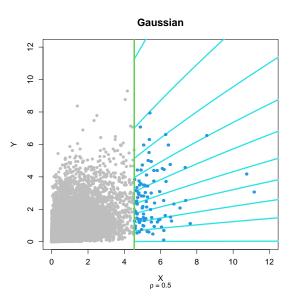
$$(Y \mid X > u) = \alpha_{y|x} X + X^{\beta_{y|x}} Z$$

as $u \to \infty$, where Z is a residual process.

- ightharpoonup Could alternatively condition on Y > u.
- Asymptotic dependence: $\alpha_{y|x} = 1$, $\beta_{y|x} = 0$.
- ► TLDR; fancy regression.

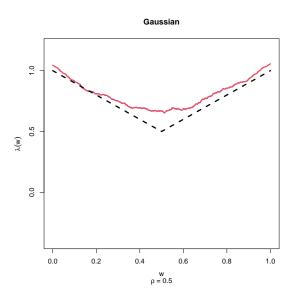






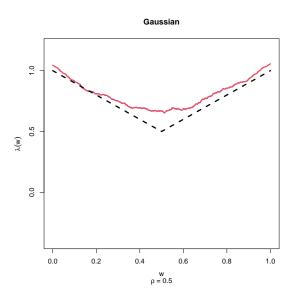
- ▶ Heffernan and Tawn (2004) model widely used in practice.
- ► Few applications of Wadsworth and Tawn (2013) exist, even though this model outperform Heffernan and Tawn (2004) in certain scenarios (Murphy-Barltrop et al., 2023b).

- ► **The problem**: until recently, the ADF has been estimated in a pointwise manner using the Hill estimator.
- ► Consider each $w \in [0,1]$ in turn, obtain an estimate $\hat{\lambda}(w)$, stitch together.
- ▶ Results in non-smooth and unrealistic ADF estimates.



Other issues with this estimator:

- Does not necessarily satisfy endpoint conditions $\lambda(0) = \lambda(1) = 1$.
- Does not necessarily satisfy lower bound $\lambda(w) \ge \max(w, 1 w), w \in [0, 1].$



Our goal:

Provide smooth ADF estimators that satisfy theoretical constraints.

- ▶ Denote non-smooth Hill estimator $\hat{\lambda}_H$
- ➤ Simpson and Tawn (2022) recently provided the first smooth estimator (others now available).
- ► This estimator exploits the results of Nolde and Wadsworth (2022).

▶ Given n independent realisations from (X, Y), we consider the shape of

$$C_n^* := \{(X_i, Y_i)/\log n; i = 1, ..., n\},\$$

as $n \to \infty$.

▶ As $n \to \infty$, we have that C_n^* converges onto the set

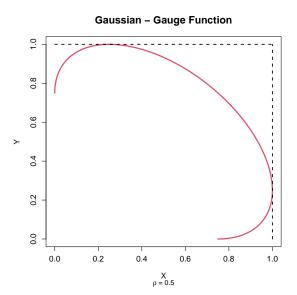
$$G^* = \{(x,y) : g(x,y) \le 1\} \subseteq [0,1]^2.$$

where g is the so-called Gauge function.

Interest lies in studying the boundary set given by

$$G = \{(x, y) : g(x, y) = 1\} \subset [0, 1]^2.$$

TLDR; scaled data points converge onto sets with nice shapes.



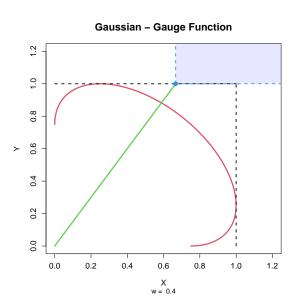
► The boundary *G* links the models of Heffernan and Tawn (2004) and Wadsworth and Tawn (2013).

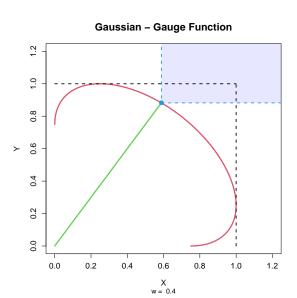
▶ We have that

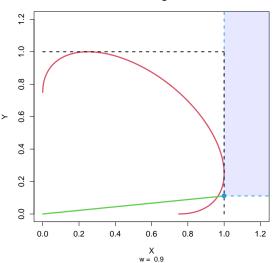
$$\lambda(w) = \frac{\max(w, 1 - w)}{s_w},$$

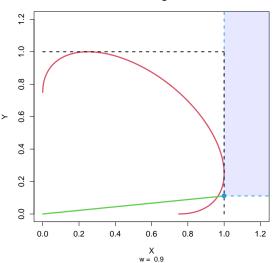
where

$$s_w = \min \left\{ s \in [0,1] : sS_w \cap G = \emptyset \right\}.$$





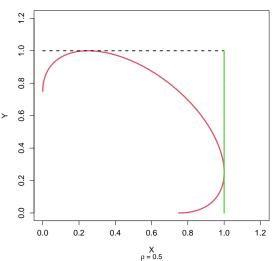




- Now consider the normalising function $a_{y|x}(x) = \alpha_{y|x}x$ (or $a_{x|y}(x) = \alpha_{x|y}x$).
- ▶ We have that

$$\alpha_{y|x} = \max \left\{ \tilde{\alpha} \in [0,1] : g\left(1, \tilde{\alpha}\right) = 1 \right\}.$$

$$\alpha_{x|y} = \max \left\{ \tilde{\alpha} \in [0,1] : g\left(\tilde{\alpha},1\right) = 1 \right\}.$$



Once we have G, we get the rest for free.

- ► Simpson and Tawn (2022) provided the first approach for estimating *G*.
- Let $\hat{\lambda}_{ST}$ denote the smooth ADF estimator obtained using this approach.

- ▶ Recall our objective: to provide smooth estimates of the ADF.
- ► Lots of approaches are available for smooth estimation of the PDF (e.g. Guillotte and Perron, 2016; Marcon et al., 2016).
- Many use flexible smooth Bernstein-Bézier polynomials.

Consider this family

$$\mathcal{B}_{k}^{*} = \left\{ (1-w)^{k} + \sum_{i=1}^{k-1} \beta_{i} \binom{k}{i} w^{i} (1-w)^{k-i} + w^{k} =: f(w) \, \middle| \, \\ w \in [0,1], \beta \in [0,\infty)^{k-1} \text{ such that } f(w) \ge \max(w, 1-w) \right\}.$$

$$\tag{1}$$

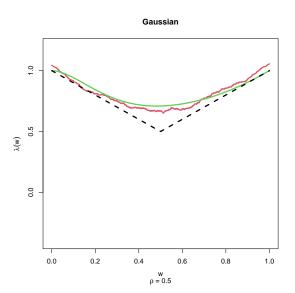
Satisfies all theoretical conditions for the ADF.

- We assume $\lambda \in \mathcal{B}_k^*$, so $\lambda(w) = \lambda(w; \beta)$.
- ▶ What remains is to estimate $\beta \in [0, \infty)^{k-1}$.
- ▶ We achieve this through a composite likelihood approach.

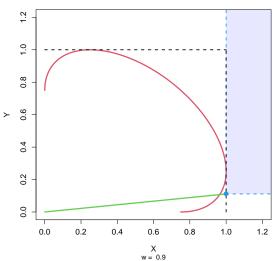
▶ We multiply this function over rays (components) $w \in [0,1]$ to give one overall likelihood function.

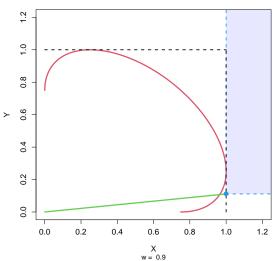
$$\mathcal{L}_{C}(\beta) = \prod_{w \in \mathcal{W}} \prod_{t_{w}^{*} \in \mathbf{t}_{w}^{*}} \lambda(w; \ \beta) e^{-\lambda(w; \ \beta)t_{w}^{*}}.$$

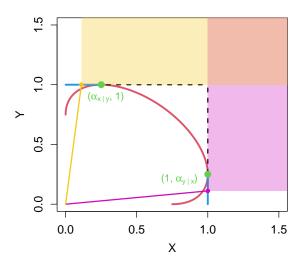
- Let $\hat{\boldsymbol{\beta}}_{CL}$ denote the maximum likelihood estimator of $\boldsymbol{\beta}$.
- Corresponding ADF estimator given by $\hat{\lambda}_{CL}(\cdot) = \hat{\lambda}(\cdot; \beta = \hat{\beta}_{CL}).$



- We also exploited a corollary from Nolde and Wadsworth (2022) to improve ADF estimation.
- In particular, we found that for all $w \in [0, \alpha_{x|y}/(1 + \alpha_{x|y})] \bigcup [1/(1 + \alpha_{y|x}), 1],$ $\lambda(w) = \max(w, 1 w).$
- ▶ If we know conditional extremes parameters $\alpha_{x|y}$, $\alpha_{y|x}$, we know where $\lambda(w, 1 w) = \max(w, 1 w)$ (and vice versa).



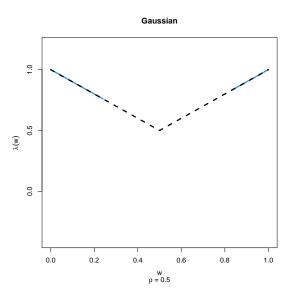


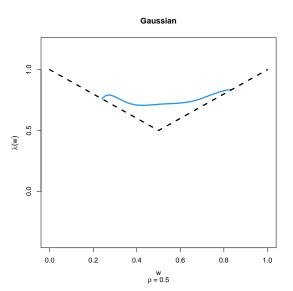


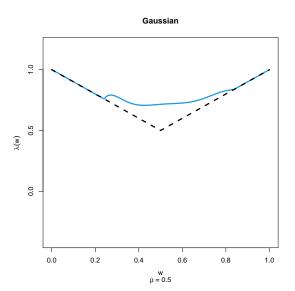
Procedure:

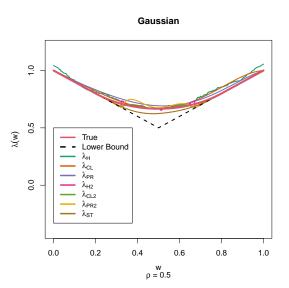
- 1. Use standard techniques to obtain $\hat{\alpha}_{y|x}$ and $\hat{\alpha}_{x|y}$.
- 2. Set $\lambda(w) = \max(w, 1 w)$ for all $w \in [0, \hat{\alpha}_{x|y}/(1 + \hat{\alpha}_{x|y})] \bigcup [1/(1 + \hat{\alpha}_{y|x}), 1]$.
- 3. Estimate λ using composite likelihood for $w \in (\hat{\alpha}_{x|y}/(1+\hat{\alpha}_{x|y}),1/(1+\hat{\alpha}_{y|x}))$ (after rescaling the polynomial family).

This gives us a second composite likelihood estimator $\hat{\lambda}_{CL2}$.

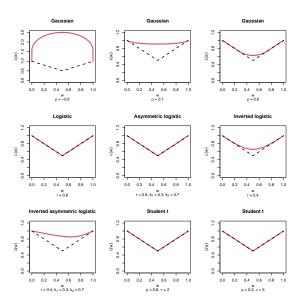








Simulation study



Simulation study

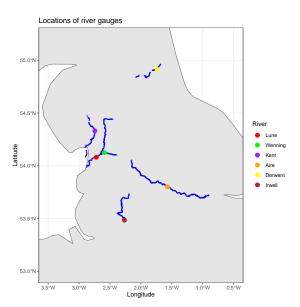
Table: RMISE values (multiplied by 100) for each estimator and copula combination. Smallest RMISE values in each row are highlighted in bold, with values reported to 3 significant figures.

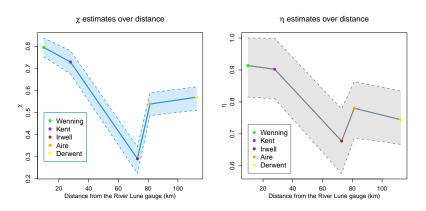
Copula	$\hat{\lambda}_H$	$\hat{\lambda}_{\mathit{CL}}$	$\hat{\lambda}_{PR}$	$\hat{\lambda}_{H2}$	$\hat{\lambda}_{CL2}$	$\hat{\lambda}_{PR2}$	$\hat{\lambda}_{ST}$
Copula 1	61.1	61.3	66.2	61.4	61.9	66.7	63.7
Copula 2	3.55	3.33	3.64	3.51	3.33	3.63	2.95
Copula 3	3.78	3.48	3.84	3.27	3.22	3.57	1.09
Copula 4	4.9	4.79	6.92	4.28	4.25	6.17	2.77
Copula 5	14.1	14.1	17.1	14.1	14.1	17	12.1
Copula 6	2.51	1.97	2.15	2	1.74	1.9	2.12
Copula 7	2.93	2.64	2.88	2.87	2.66	2.89	3.96
Copula 8	2.49	2.72	2.95	0.66	0.6	0.789	1.87
Copula 9	12.1	12	14.9	12	12	14.9	11.1

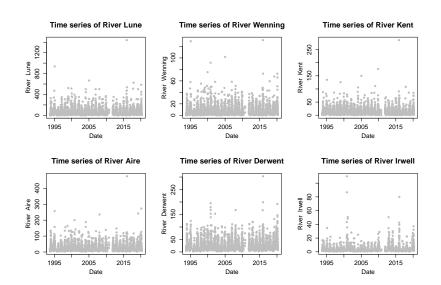
Simulation study

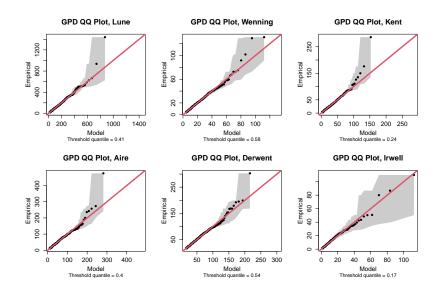
Global estimators > pointwise estimators

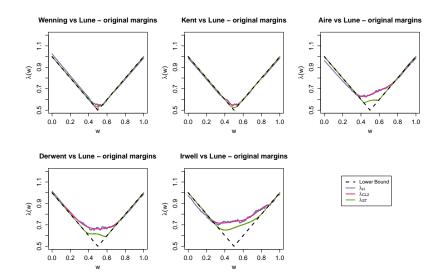
Important insight: estimators linked to Gauge functions/limit sets performed best.









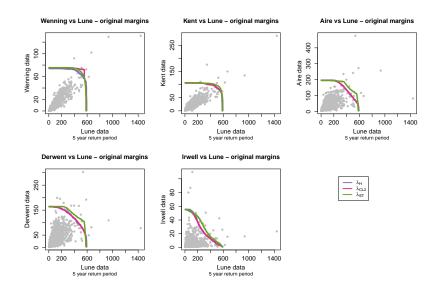


Case Study

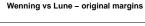
Return curves defined by the set

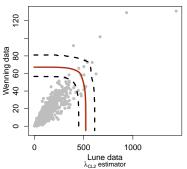
$$RC(p) := \{(x, y) \in \mathbb{R}^2 \mid Pr(X > x, Y > y) = p\},\$$

where p is very small.

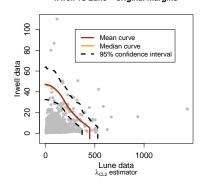


Return curve diagnostics indicated good accuracy.





Irwell vs Lune - original margins



Discussion

In summary

- We have proposed a range of global estimators for the ADF and compared these to existing techniques.
- Global estimators consistently outperform pointwise techniques.
- ADF is a valuable tool for estimation of joint extremes under asymptotic independence.

Discussion

▶ More generally, this paper illustrates the benefits of applying the limit set representation for multivariate extremes in practice (both directly and indirectly).

Discussion

- Lack of theoretical results for estimators.
- Limited to bivariate setting.
- Selecting tuning parameters (not discussed here).

See Murphy-Barltrop et al. (2023a) for further details.

Thanks for listening!

Does anyone have any questions?

Plus, an EVT joke courtesy of ChatGPT: Why did the statistician only trust extreme value theory? Because he knew the average could be mean.

References I

- Guillotte, S. and Perron, F. (2016). Polynomial pickands functions. *Bernoulli*, 22:213–241.
- Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 66:497–546.
- Ledford, A. W. and Tawn, J. A. (1996). Statistics for near independence in multivariate extreme values. *Biometrika*, 83:169–187.
- Ledford, A. W. and Tawn, J. A. (1997). Modelling dependence within joint tail regions. *Journal of the Royal Statistical Society. Series B: Statistical Methodology*, 59:475–499.
- Marcon, G., Padoan, S. A., and Antoniano-Villalobos, I. (2016). Bayesian inference for the extremal dependence. *Electronic Journal of Statistics*, 10:3310–3337.

References II

- Murphy-Barltrop, C. J. R., Wadsworth, J. L., and Eastoe, E. F. (2023a). Improving estimation for asymptotically independent bivariate extremes via global estimators for the angular dependence function. *arXiv*, 2303.13237.
- Murphy-Barltrop, C. J. R., Wadsworth, J. L., and Eastoe, E. F. (2023b). New estimation methods for extremal bivariate return curves. *Environmetrics*.
- Nolde, N. and Wadsworth, J. L. (2022). Linking representations for multivariate extremes via a limit set. *Advances in Applied Probability*, 54:688–717.
- Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer New York.
- Simpson, E. S. and Tawn, J. A. (2022). Estimating the limiting shape of bivariate scaled sample clouds for self-consistent inference of extremal dependence properties. *arXiv*, 2207.02626.

References III

Wadsworth, J. L. and Tawn, J. A. (2013). A new representation for multivariate tail probabilities. *Bernoulli*, 19:2689–2714.